
 ABSTRACT

In 1994, we introduced the world’s first publicly available natural-
language dialog system, which has given information on the
schedule of the German railways. Since then, the software package
used for the implementation of this system has been improved in
various ways.

In addition, the original train timetable information system has not
remained the sole application: A number of other systems have
become available during the past few years and are now in every-
day use.

In this paper, we will give a brief overview of our system, the un-
derlying technology, and the most important applications realized
so far.

1. INTRODUCTION

Automatic inquiry systems, as we normally call this particular sub-
set of telephone-based human-machine dialog systems, are sys-
tems that people can call in order to obtain certain information, or
to have a transaction performed, without a human operator being
involved. In their most basic form, they consist of a hierarchy of
menus, each of which offers a number of alternative actions to
choose from. Callers can navigate up and down the structure by us-
ing the keys of their telephones or, in some cases, simple speech
commands.

Especially in the USA, these systems have become widely used.
They are based on relatively reliable and cheap technology, but
are, on the other hand, not very user-friendly. What we really
would like to have are systems with which a caller can communi-
cate with natural, unrestricted, and fluent speech, in the same way
he or she would talk to a human operator, without having to follow
a rigid hierarchy of menus. In other words: The system should
adapt to the caller, not vice versa.

While many research groups world-wide are working on these nat-
ural-language dialog systems, and even though a number of proto-
types have become available during the last couple of years, some
of which accessible also by people outside the respective organi-
zations that created them, it seems that the Philips system is still
the only one that actually has left the laboratory and is in everyday
use.

2. THE PHILIPS SYSTEM

Early in 1994, we introduced a train timetable information system
that was, as far as we know, the world’s first natural-language di-
alog system available to the general public. This system is de-
scribed in more detail in [2] and [3]; however, we will sum up its
most important ideas here.

2.1. System Architecture
The architecture of our system has been based on two main princi-
ples: First, it has been our goal right from the beginning not to de-
velop a single optimized application but rather a methodology,
along with a development tool, that would allow the creation of ap-
plications from various areas, as long as they shared the basic char-
acteristics of an automatic inquiry system. This means that we
have separated application-specific details from general mecha-
nisms. Second, we took care to organize the main processing com-
ponents, namely speech recognition, speech understanding, dialog
control, and speech output, as separate, individual modules that are
executed sequentially but do not otherwise communicate while a

Speech Recognition

Speech Understanding

Dialog Control

Speech Output

Caller

Data-
Base

Figure 1: The basic architecture of the Philips system.

Speech
Recognition
Parameters

HDDL

Application

Description

AN OVERVIEW OF THE PHILIPS DIALOG SYSTEM

Harald Aust*, Olaf Schröer**

*Philips Speech Processing, Weisshausstr. 2, 52066 Aachen, Germany, aust@pfa.research.philips.com
**Philips Speech Processing, Kackertstr. 10, 52072 Aachen, Germany, schroer@acn.be.philips.com

sentence is processed (see Fig. 1). This helped us keep the system
simple, efficient, and easily extendable. These components are de-
scribed briefly in the following sections.

2.2. Speech Recognition
The speech recognizer used in our dialog system is based on our
standard large-vocabulary continuous-speech HMM recognizer
also employed for other purposes, e.g. dictation [9]. However, in
our case, the output from the recognizer is not a single best sentence
but a word graph that contains alternatives. This allows the system
to utilize the knowledge contained in the subsequent speech under-
standing module for the actual computation of the most likely se-
quence of spoken words.

Initially, the speech recognition component accounted for about
95% of the computational power needed to run the system. While
we have been able to improve its efficiency considerably (see sec-
tion 3.1.), recognition still is the single most time-consuming task.

2.3. Speech Understanding
Unlike read speech, spontaneous speech is often grammatically in-
correct. In fact, in systems used in the real world, grammatically
correct sentences are the exception rather than the rule. In addition
to that, the performance of the recognizer in a natural-language di-
alog system tends to be relatively poor because of the adverse con-
ditions of medium to large vocabulary, speaker independence,
telephone-line signal quality, real-time constraint and so on. Word
error rates can be as high as 30%.

This means that an attempt to parse a user utterance completely
would fail quite often. Therefore, we do not try to do so in our
speech understanding component. Instead, we are looking only for
those words and word sequences – so-called concepts – that carry a
meaning with respect to the application. This method has not only
shown to yield very good understanding results [1], it is particularly
robust towards corrupted speech input. In addition, it is computa-
tionally inexpensive.

For the definition of and the search for the concepts, we use an at-
tributed stochastic context-free grammar that serves three purpos-
es:

• It is used as a language model;

• it identifies the concepts;

• and it is used to compute their meaning.

2.4. Dialog Control
While the sequence of possible questions and actions is relatively
constrained in hierarchical, menu-structured dialog systems, the sit-
uation is completely different in flexible natural-language systems:
In general, almost any question can follow almost any other, de-
pending on user behavior and recognition results. Therefore, using
traditional means of describing the dialog flow, e.g. finite state net-
works, would normally result in specifications of enormous size
and complexity, and is generally not possible anymore.

To overcome this problem, we have developed a description lan-
guage, called HDDL, specifically for the kind of dialogs that are en-
countered in automatic inquiry systems. The principles of this
language and its interpreter were already introduced in [3]; here, we
will only briefly recall the basic ideas:

• All information that constitutes the specification of a dialog,
in particular phrases to be understood, questions to be asked,
and actions to be taken, is organized in so-called sections each
of which contains a certain class of information.

• For reduced complexity, the information in these sections is
usually denoted in a declarative way.

• The HDDL interpreter automatically creates the next question
according to a from-specific-to-general strategy, based on the
dialog description as well as the actual system status.

• Two macros are available for the HDDL programmer that
automatically handle questions and confirmation. In particu-
lar, they take care of rephrasing in case of repetitions, deal
with the processing of special elements in a caller’s response,
e.g. expressions for “yes” or “no”, and perform other related
tasks.

• A general-purpose transaction interface facilitates the inclu-
sion of arbitrary databases or the interaction with external sys-
tems.

2.5. Speech Output
Our system contains a very simple language generation component
that allows the creation of system questions or other output by con-
catenating phrases specified in the HDDL program. This process is
controlled by specific conditions which in turn have access to the
current system status.

While there have been considerable improvements in speech syn-
thesis programs during the last few years, their output still does not
sound very natural. Therefore, we have not used any of them for the
conversion of the so generated written sentences to spoken ones so
far. Instead, we rely on concatenating and replaying pre-recorded
phrases.

For a finished system that will be in wide-spread use, it may be well
worth the effort to optimize the output created this way. For exam-
ple, the speech quality can be improved considerably by using pro-
sodically different versions of the same word, depending on the
context it appears in, and by cutting the individual phrases out of
complete sentences instead of recording them separately and with-
out their appropriate context. The work described in [5] has shown
that the resulting system prompts can indeed sound very natural.

3. EXTENSIONS AND IMPROVEMENTS

The original ideas, as described in the previous sections, are still the
foundation of the current Philips dialog system. Of course, there
have been a number of enhancements since its introduction. In the
course of the following passages we will outline the most important
improvements and some of the new features.

3.1. Speeding up the System
Initially, three 275 MHz DEC AXP workstations running in paral-
lel were necessary for coping with the system’s power demands,
serving just one telephone line. Two of these machines did the dis-
tance calculations for the recognizer; the third one handled all the
rest including speech understanding and dialog control. The system
has always been a pure software solution, written in C and C++; no
specialized hardware is employed.

As already mentioned, the computationally by far most expensive
module is the recognizer. Our optimization efforts have therefore
been focused on this component. Increasingly efficient algorithms
and more sophisticated implementations used here have not only
improved the recognition accuracy but have also lead to a substan-
tial reduction of hardware demands.

As a result, we are now able to simultaneously serve 4 lines of a
train schedule information system, or a system with comparable vo-
cabulary size and complexity, on a single 266 MHz PC, of course
meeting real-time conditions. And fortunately, we can still see pos-
sibilities for even further decreased hardware costs.

3.2. Feedback from Dialog Control to Speech
Understanding
The main data flow follows a sequential path from speech recogni-
tion via speech understanding, dialog control, and speech output, as
depicted in Fig. 1. For greater flexibility and dialog naturalness,
however, it is useful if speech understanding can be modified de-
pending on the current dialog state. Consequently, we introduced a
way for adapting this component to specific dialog situations.

These adaptations are specified either implicitly or explicitly in the
dialog control part of the HDDL program. For example, in case of
confirmations that make use of the macro provided by HDDL, the
programmer does not ask for any feedback directly; he or she only
writes down the concepts which should be understood in case of a
verification. Passing this information to the speech understanding
component, and, in particular, enabling or disabling of these con-
cepts is done by the HDDL run-time system automatically and si-
multaneously with the creation of a system prompt whenever the
macro becomes applicable.

For explicit feedback, on the other hand, HDDL statements are
available for
• enabling and disabling of specific concepts for the processing

of the next utterance,
• defining preferences between concepts, and
• calling or activating complete dialog modules, so-called sub-

dialogs (cf. section 3.6.).

3.3. Feedback from Dialog Control to Speech
Recognition
A second feedback loop exists that encompasses dialog control and
speech recognition: An HDDL statement is available for switching
the lexicon, language model, and acoustic model of the recognizer.
As a result, the HDDL program can control specialized recognizer
configurations for specific dialog situations. Typical examples are
the recognition of digits, names, or spelling. Moreover, this feature
supports an easy development of multilingual applications.

Feedback information can only be passed inbetween sentences.
During the processing of an individual utterance, the data flow fol-
lows the usual sequential structure.

3.4. Improved Search
The basic version of our dialog system employs word n-grams and
a stochastic context-free grammar as language models. Because of
the way these word-level language models are normally used, they
are unable to capture certain rigid or long-range constraints without

adequate pre-processing of the training data or manual adaptation
of the models. Such constraints, however, can be useful for reject-
ing inconsistent, and therefore probably misunderstood, user utter-
ances. In an automatic switchboard system, for example, a co-
operative caller will never intentionally ask for a non-existent per-
son. Being able to reject an invalid first name / last name combina-
tion in the framework of our stochastic language models, however,
would either require to include all valid names into the grammar, or
to make sure that all correct combinations appear in the training
material. For reasons of easy maintenance, neither solution is really
viable. In fact, if we look at consistency across several sentences,
neither would be able to handle it at all.

Therefore, an improved search in our automatic telephone switch-
board system PADIS uses an external database that describes con-
sistent information, e.g. actually existing first and last name
combinations, and handles constraints at several levels. In particu-
lar, the consistency of

• the user’s utterance itself,

• new information vs. the current dialog state, and

• new information vs. the last system prompt

is checked. A flexible n-best algorithm is used for computing the
next-best sentence from the word graph until consistent informa-
tion is found. This method reduced the attribute error rate by 27%
relatively [8].

3.5. Confidence Measures
Dialog systems which make use of confidence measures for recog-
nized semantic items are able to behave more human-like than sys-
tems with a rigid verification scheme: The reliability of recognized
items can be used to control the extent and manner of verification.
For example, understood values with a high reliability will not be
verified at all, whereas a particularly poor recognition leads to an
explicit confirmation, or even to the rejection of the item.

Experimental results with the PADIS system show that the proba-
bilities delivered by the recognizer can be taken as a direct measure
for the reliability of the recognition [7]. In this approach, the prob-
abilities for an n-best list are determined and re-normalized for each
semantic item of the best sentence. This method is computationally
inexpensive, leads to a significant improvement in terms of natural-
ness of the dialog flow, and reduces the average call duration.

3.6. HDDL Subdialogs
The basic ideas and principles of our dialog description language
HDDL (cf. section 2.4.) have already been part of the original im-
plementation ([10], [11]). When it came to a redesign of the lan-
guage, our main emphasis lay on the support of easier application
development. All the details of the new syntax and features are de-
scribed in [12] and [13]; here, we will concentrate on the concept
for application modularization that has already been introduced in
[4].

HDDL modules are called subdialogs and may contain all sections
of a complete HDDL program, i.e. an attributed grammar for
speech understanding, variable definitions, rules describing consis-
tency and background information, dialog flow specifications,
transaction interface, etc. In fact, it is possible to define a complete
stand-alone dialog in one single module. Alternatively, an applica-
tion can be divided into several subdialogs describing specific as-

pects or useful dialog fragments – very similar to the
modularization techniques known from other programming lan-
guages.

What sets the subdialog concept apart, however, is a sophisticated
calling mechanism that makes it suitable for various situations. A
subdialog can either be called, activated or set to listen:

• Calling a subdialog is comparable with a function call in pro-
gramming languages such as C. The current scope is pushed
on a stack, parameters are passed and a new scope is entered.
This mechanism is appropriate if an application can be
divided into largely independent sub-applications with their
own speech understanding and dialog control parts.

• If a subdialog is activated, its specifications are added to the
current scope instead of replacing it, i.e. speech understanding
will be based on an extended grammar afterwards, and the
dialog flow will be controlled by more actions. The declara-
tive character of HDDL allows the definition of clear seman-
tics for the extended scope. Using activation, even
applications with sub-tasks that are strongly related to each
other can be modularized. In particular, recurring tasks need
only be described once.

• Setting a subdialog to listen means adding only its speech
understanding part to the current scope. Values for variables
of this subdialog can be understood, but accompanying
actions will not be performed in this state. A typical example
for using the listening mode is an application providing differ-
ent services, implemented as subdialogs, after an initial selec-
tion question:

System: “Do you need price or timetable information?”
Caller: “I need price information for travelling groups.”

The first part of the caller’s response belongs to the selection
question, whereas the second provides already information
for the price subdialog. By setting both the price and the time-
table subdialogs to listen, the complete answer can be pro-
cessed. Subsequently, the desired sub-application can be
called without losing the information already given by the
user.

Fig. 2 shows the current architecture of our system that incorporates
the modifications described above.

4. IMPLEMENTED APPLICATIONS

Our system has been used for the realization of many applications
from a variety of areas, in different languages, complex or simple,
most notably the ones listed below. All status information given is
as of February 1998.

• Probably best known is our already mentioned train timetable
inquiry system in the German language, called TABA for
“Telefonische Automatische Bahnfahrplan-Auskunft” (tele-
phone-based automatic train timetable information), which
has been publicly available under +49-241-604020 since Feb-
ruary 1994. This system can provide information on connec-
tions between about 1,000 German cities. It incorporates a
database that contains real connection data, so people have
been using it from the very beginning if they wanted to obtain
an actual connection, providing us with real-life speech data.

This system is not related to the information service of Deut-
sche Bahn, the main operator of the German railway system,
which means in particular that it is neither advertised nor oth-
erwise commercially supported. Nonetheless, demand has
been so high that we added a second telephone line in 1995.
On average, we receive about 2,500 calls per month, with a
success rate1 of more than 90%.
For a detailed description of the system and our experience
gained from its operation, see [2].

• A similar system, also in German, has been implemented for
Swiss Railways (SBB), and has been operational since June
1996. The system handles about 3,000 railway stations and
bus stops, many of which do not have German but French or
Italian names. It serves four telephone lines (additional lines
are currently being installed) and is part of SBB’s comprehen-
sive travel information service. Human-operated schedule
information is still available under a separate telephone num-
ber, but at a higher cost for the caller.
SBB did an extensive survey on this system in 1996 [6], based

1. The success rate, our standard quality measure for inquiry systems, is
the percentage of appropriate calls that were completed successfully,
i.e. in the course of which the caller actually got the information he or
she apparently wanted. “Appropriate calls” are calls that the system by
design can handle; if a caller tries to, say, order a pizza from a train
schedule information system, the call is not counted as a failure but is
simply ignored.

Speech Recognition

Speech Understanding

Dialog Control

Speech Output

Caller

Data-
Base

HDDL

Application

Description

Speech
Recognition
Parameters

Figure 2: The improved architecture of the Philips system. While
we retained the basic principles, in particular the sequential execu-
tion of the processing modules, it is now much more easily possible
to adapt the system’s behavior to individual dialog situations, con-
trolled by the HDDL application description and the actual system
status: Concepts and constraints can be specified on an external da-
tabase, the understanding module provides confidence measures to
affect the dialog flow, and feedback from dialog control can be
used to modify the behavior of speech recognition, speech under-
standing, and dialog control itself, for example by making use of
HDDL subdialogs.

Concepts
Constraints

!?!?

on a questionnaire appended to the system itself, as well as
direct customer contacts. It turned out that 93% of the calls
that fell into the system’s domain were completed success-
fully; in addition, more than 80% of the callers asked
expressed satisfaction and will use the system again. These
figures show clearly that natural-language dialog systems can
indeed be operated highly successfully under real-world con-
ditions.

• A Dutch travel information system, serving 15 lines, has
become available early in 1998; a similar system in French
language is currently under development.

• A system that provides information whether a flight is on time
was introduced by Lufthansa airways in June 1997. Its lan-
guage is German; however, it allows the speaking of foreign
city names in their respective language (English, French,
Spanish etc.). Since the recognizer is based on German acous-
tics, the foreign names were specifically transcribed using the
German phoneme set, resulting in somewhat strange but
effective transcriptions.
This system was installed as part of an already existing menu-
structured environment and serves 12 lines. At a point in the
menu hierarchy at which callers had been referred to human
operators before, they are now connected to our system. Wait
times are down, and the success rate is better than 90%.

• The same basic multilingual approach is employed in a
weather information system that is currently in the testing
phase. It has been implemented by Deutsche Telekom, using
our dialog system development toolkit. For full roll-out, 8
locations with 60 lines each are planned.

• A restaurant guide for the Boston area, in American English,
is our American demonstration system. It is available under
+1-770-350-6212. A caller can specify the desired type of
food (e.g. Italian or French), the preferred location, and a
price range. Similar systems exist for Atlanta and Toronto, the
latter one currently being extended to a comprehensive yellow
pages service. This project is done together with a major
Canadian telecommunications company.

• SpeechAttendant is, as the name implies, a generic automatic
telephone attendant installed at several sites in Germany. Call-
ers can ask, as usual in fluent speech, for information on up to
250 employees of a company, e.g. telephone or fax number,
office location, e-mail address etc., and can be connected to a
desired extension. A more basic version has been widely used
within Philips for more than two years, and has rendered tra-
ditional telephone lists largely unused.

5. CONCLUSION AND FURTHER WORK

As we could learn by developing, installing, and operating the ap-
plications briefly described above, our approach to natural-lan-
guage dialog systems is well suited for the various areas and
problems addressed, not only in the laboratory, but also in the real
world and with real everyday users. In fact, while there is clearly
room for improvements of our core technology itself, it appears
nonetheless that we have now reached a point at which it is more
important to address the various aspects of the environments our
systems are used in.

A typical example is the audio/telephony interface, for which a
number of topics will have to be looked into: Standard telephony
features like barge-in or DTMF recognition will have to be support-
ed. When more than just a few lines need to be installed for a ser-
vice, a scalable client/server architecture will be needed.
Applications on the client side will have to communicate across a
LAN with the server that provides the telephone network access.

On the other hand, it is very important, and equally challenging, to
speed up the application creation process. The first step has been
the introduction of the HDDL modularization concept. A next step
should be the development of re-usable HDDL subdialogs and per-
taining language models, a task not as simple and straightforward
as it may appear at first glance. A comfortable, easy-to-use HDDL
development environment, as well as the improvement of already
existing tools, is just as necessary. It should be noted, however, that
even today the collection of adequate training material for the
acoustic model and the language models is clearly more time-con-
suming than the actual application development itself.

REFERENCES

1. H. Aust, M. Oerder: “Database Query Generation from Spo-
ken Sentences”. 2nd Workshop on Interactive Voice Technol-
ogy for Telecommunications Applications (IVTTA 94),
Kyoto, Japan, pp. 141–144, Sept. 1994.

2. H. Aust et al.: “The Philips Automatic Train Timetable Infor-
mation System”. Speech Communication 17, pp. 249–262,
Nov. 1995.

3. H. Aust, M. Oerder: “Dialogue Control in Automatic Inquiry
Systems”. ESCA Workshop on Spoken Dialogue Systems,
Aalborg, Denmark, pp. 121–124, June 1995. Also published
in: 9th Twente Workshop on Language Technology, Ensche-
de, The Netherlands, pp. 45–49, June 1995.

4. H. Aust, N. Lenke: “The Philips Dialog System – Applications
and Improvements”. COST Telecom Workshop, Rhodes,
Greece, pp. 25–32, Sept. 1997.

5. E.A.M. Klabbers: “High-Quality Speech Output Generation
through Advanced Phrase Concatenation”. COST Telecom
Workshop, Rhodes, Greece, pp. 85–88, Sept. 1997.

6. J.-C. Peng, R. Flückiger, S. Häfeli: “Prisma Voice Konzept”.
SBB-internal document, Oct. 1996.

7. B. Rueber: “Obtaining Confidence Measures from Sentence
Probabilities”. 5th European Conf. on Speech Communication
and Technology (EUROSPEECH 97), Rhodes, Greece, pp.
739–742, Sept. 1997.

8. F. Seide, B. Rueber, A. Kellner: “Improving Speech Under-
standing by Incorporating Database Constraints and Dialogue
History”. 4th Int. Conf. on Spoken Language Processing
(ICSLP 96), Philadelphia, PA, USA, pp. 1017–1020, Oct.
1996.

9. V. Steinbiss et al.: “Continuous-Speech Dictation – From The-
ory to Practice”. Speech Communication 17, pp. 19–38, Aug.
1995.

10. “SpeechMania 1.0: HDDL Reference Manual”. Philips Dia-
logue Systems, Aachen, Germany, 1996.

11. “SpeechMania 1.0: HDDL User’s Guide”. Philips Dialogue
Systems, Aachen, Germany, 1996.

12. “SpeechMania 2.0: HDDL Reference Manual”. Philips Dia-
logue Systems, Aachen, Germany, 1997.

13. “SpeechMania 2.0: HDDL User’s Guide”. Philips Dialogue
Systems, Aachen, Germany, 1997.

